Operating System Concepts

Lesson 7,

Objectives

8

Process Scheduling
Operations on processes

Cooperating processes

PROCESS SCHEDULING

The objective of multiprogramming is to have some process running all the times, to

maximize CPU utilization. The objective of time sharing is to switch the CPU among

processes so frequently that users can interact with each program while it is running. For

a uni-processor system it is not possible to run more than one processes at same time, so

rest of the processes have to wait for CPU to be free. This is called process scheduling.

Process Scheduling Queues

Job queue — set of all processes in the system that are just entered

Ready queue — set of all processes residing in main memory, ready and
waiting to execute. This queue is generally stored as a linked list. A ready
queue header will contain pointer to the first and last PCBs in the list

Device queues — set of processes waiting for an 1/0 device (waiting state)

queue header PCB, PCB,
ready head > > =
queue tail  « registers registers
mag head —+——=
tape :
unit 0 I ——
{nag head —+——=
ape
uni?1 =il ] PCB, PCB,, PCBg
/ 7]
disk head 1
unit 0 tail
PCB;
terminal head —=
unit 0 TR |




Operating System Concepts

A new process is initially put into a ready queue. It waits for its selection for execution in
CPU. Once it is given the CPU and is executing, one of several events could occur, like

e The process could issue an 1/0 request, and then be placed in an I/0 queue

e The process could create a new sub-process and wait for its termination

e The process could be removed forcibly from CPU, as a result of an interrupt,

and may be put back into ready queue

In above cases process switches between the waiting to ready states, this cycle goes on
until process is terminated. Then it is removed from all queues and has its PCB and
resources de-allocated.

Following is given a queuing diagram representation of process scheduling.

f ready queue » CPU l

I/O queue < /O request <
time slice «
expired
child fork a _
executes child N
interrupt wait for an
Q:curs interrupt

Schedulers
Processes migrate among the various queues through their lifetime. So operating system
must select these processes from these queues in some fashion. This is carried out by an
scheduler.

There are three types of schedulers.

» Long-term scheduler (or job scheduler) — selects which processes should be
brought into the ready queue. It is less frequent. It controls the degree of
multiprogramming (the number of the processes in the memory) so it has much
time to decide which process should be en-queued. Since processes are of two
types 1/O bound which takes much time in 1/O than in execution, and CPU bound
are the processes which take more CPU time compared to 1/O activities.



Operating System Concepts

» Short-term scheduler (or CPU scheduler) — selects which process should be
executed next and allocated CPU. This should be very fast since its decision time
is subject to CPU utilization also it is utilized very frequently.

» Medium-term scheduler (or swapper) — it offers medium level of scheduling.
Sometime it is advantageous to remove from main memory and CPU, while this
process need to come back again, so instead of removing it permanently it is kept

in medium-term scheduler such that can be accessed back for convenience.

swap in partially executed swap out
swapped-out processes

ready queue » CPU » &Ne

@1 I/O waiting
N

queues

r

Context Switch
Switching the CPU to another process requires saving the state of old process and loading
the saved state for the new process. This task is called context switch. It is an overhead
since in that while CPU sits idle. Its speeds varies in the range (1-1000usec) form
machine to machine depending on
=  Memory speed
= Number of register which may be copied
= Existence of special instruction for save
OPERATIONS ON PROCESSES
The processes in the system can be executed concurrently (occur at the same time), and
must be created and deleted dynamically. Hence OS gives a mechanism to carry on these
steps.
Process Creation
1. A process can create several processes, via a CreateProcess system call, during
execution. The creating process is called parent process, while created process
called its child process

2. ltis possible that a sub-process share a subset of its parent resources



Operating System Concepts

3. Principal events that cause process creation

a. System initialization

Foreground and background processes (Foreground-background is a scheduling algorithm that is used to

control execution of multiple processes on a single processor. It is based on two waiting lists, the first one is

called foreground because this is the one in which all processes initially enter, and the second one is
called background because all processes, after using all of their execution time in foreground, are moved to background.

When a process becomes ready it begins its execution in foreground immediately, forcing the processor to give up
execution of current process in the background and execute newly created process for a predefined period. This period is
usually 2 or more quanta. If the process is not finished after its execution in the foreground it is moved to background
waiting list where it will be executed only when the foreground list is empty. After being moved to background, process is
then run longer than before, usually 4 quanta. The time of execution is increased because the process obviously needs
more than 2 quanta to finish (this is the reason it was moved to background). This gives the process the opportunity to
finish within this newly designated time. If the process does not finish after this, it is then preempted and moved to the end
of the background list.

The advantage of the foreground-background algorithm is that it gives process the opportunity to execute immediately
after its creation, but scheduling in the background list is pure round-robin schedulinq).

b. Execution of a process creation system call by a running process
i. Concept of independent interacting processes
c. User request to create a new process
d. Initiation of a batch job
4. System calls to create new process are Fork in UNIX and Create_Process in
windows
5. Execution:
a. A parent continues to execute concurrently with its children
b. A parent waits until some or all of its child terminated
6. Address space:
a. Child duplicate of parent
b. Child has a program loaded into it
7. UNIX examples
a. fork system call creates new process
b. exec system call used after a fork to replace the process’ memory space
with a new program
Process Termination
Conditions which terminate processes:

1. Normal exit (voluntary) — successful termination


https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
https://en.wikipedia.org/wiki/Round-robin_scheduling

Operating System Concepts

2. Error exit (voluntary) — erroneous termination
3. Fatal error (involuntary) — terminated by operating system
4. Killed by another process (involuntary) — parent kills child
For example, the parent may terminate the child due to the following reasons:
= The child has exceeded its usage of some of the resources allocated
= The task assigned to the child is no longer required
= The parent is exiting and the operating system does not allow a child to continue
if its parent terminates it is called cascading termination

COOPERATING PROCESSES
In operating system processes can either be independent—when they does not affect or
effected by any other process, or cooperating —which may affect and effected by other
processes. This is done due to the following reasons.
Information Sharing
Since several users may interested in same piece of information (for example, a shared
file), we must provide an environment to allow concurrent access to these types of
resources.
Computation Speedup
One way to make a task speedy we can divide it to subtasks, each executing in parallel to
other. This can be obtained in multiprocessing environment.
Modularity
A system may be modularized in order make more smooth and speedy.
Convenience
It is convenient for an individual user to do many tasks in single time. Like editing,
printing, compiling etc.
Example

To illustrate the concept of cooperating system, let us take an example of
consumer-producer processes. Producer produces the information while consumer
consumes it. Here are two scenarios for this one is called unbounded-buffer and other is
bounded-buffer.



Operating System Concepts

In unbounded buffer, producer can produce unlimited information in buffer or
buffer has no practical limit. If the buffer is empty then consumer has to wait for the new
item.

In bounded buffer, producer can produce up to filling of buffer then he waits if
buffer is full, till some portion is utilized, similarly consumer has to wait for new item if

buffer is empty earlier.



